
TransSkel Programmer’s Note 11 The TransSkel 3.11 Interface

TransSkel
Programmer’s Notes

11: The TransSkel 3.11 Interface

Who to blame: Paul DuBois, dubois@primate.wisc.edu
Note creation date:02/23/94
Note revision: 1.00
Last revision date:
TransSkel release: 3.11

As of release 3.11, TransSkel public functions are compiled using Pascal binding 
conventions, rather than using C binding conventions. This Note describes how to port 
pre-3.11 TransSkel applications so they’ll work with release 3.11. It also discusses the 
rationale for making the change.

TransSkel is written in C, and up until release 3.09, the TransSkel library was compiled 
using C function binding conventions. As of release 3.11, all public interface functions 
provided by TransSkel are compiled using Pascal binding conventions. (3.10 was a 
transitional release and is a special case described later). In addition, any callback 
functions passed to TransSkel by the host application are expected to use Pascal 
conventions. This allows TransSkel to be used not only from with C applications, but 
with Pascal applications as well.

Porting Applications Written for Releases 3.09 and Earlier

Unfortunately, the way the C and Pascal conventions use the stack to handle function 
arguments are incompatible, so TransSkel applications written for releases up to 3.09 
need to be modified to work with the 3.11 interface.

The porting process is straightforward. The compiler will automatically compile your 
code to use Pascal conventions for calls to TransSkel applications as long as you include 
TransSkel.h in source files that make TransSkel calls. Since you should be including this 
file anyway, that should not present a problem.

Callback functions your application passes to TransSkel must be compiled to use Pascal 
conventions. With one exception, this means only that you add the keyword pascal to 
your function type specification. For example, menu item selection functions used to be 

Page 1



TransSkel Programmer’s Note 11 The TransSkel 3.11 Interface
defined like this:

void
MyMenuSelect (short item)
{

/* process selection */
}

Now they should be defined like this:

pascal void
MyMenuSelect (short item)
{

/* process selection */
}

Page 2



TransSkel Programmer’s Note 11 The TransSkel 3.11 Interface

Similarly, the mouse click function for window handlers used to be defined like this:

void
Mouse (Point where, long when, short modifiers)
{

/* do click processing */
}

Now it’s defined like this:

pascal void
Mouse (Point where, long when, short modifiers)
{

/* do click processing */
}

The exception is the key click function for window handlers. It used to be defined like this:

void
Key (char c, unsigned char code, short modifiers)
{

/* do key processing */
}

It’s not sufficient to add the word pascal to this definition. For prototyped functions (which TransSkel uses, since it’s fully prototyped), 
THINK C passes character arguments in the high byte of a two-byte stack value. Thus the character and code values would appear in the 
wrong half of the parameter values as Pascal procedures would see them, since the value is in the low byte for Pascal char parameters. To 
avoid this problem, key handlers should be written like this now:

pascal void
Key (short c, short code, short modifiers)
{

/* do key processing */
}

The character arguments are now short; however, this is consistent with the way the THINK C headers declare char arguments in 
Toolbox function prototypes, so you can pass c directly to Toolbox functions.

Porting the Lazy Way

Just open your project document and update it. The compiler will stop and complain 
whenever it finds that you’re passing a callback to a TransSkel function that’s not defined
properly. That way you know what you need to change.

Porting C Applications Written for Release 3.10

3.10 was a transitional release that allowed two versions of TransSkel to be compiled, one
for C function bindings and one for Pascal bindings. This was done by defining the 
symbol skelBinding as either nothing or pascal in TransSkel.h, so that the library 
could be compiled one way or the other. The reference manual for the 3.10 release 
provided some guidelines for writing application code so it would be compatible with 
either interface. For instance, instead of writing a menu selection function like this:

Page 3



TransSkel Programmer’s Note 11 The TransSkel 3.11 Interface
void
MyMenuSelect (short item)
{

/* process selection */
}

You would write it like this:

skelBinding void
MyMenuSelect (short item)
{

/* process selection */
}

Instead of writing a key handler like this:

void
Key (char c, unsigned char code, short modifiers)
{

/* do key processing */
}

You’d write it like this:

#if skelPascalCompat
skelBinding void
Key (short c, short code, short modifiers)
#else
void
Key (char c, unsigned char code, short modifiers)
#end
{

/* do key processing */
}

skelBinding is no longer used, so any code written to use it must be revised.

If you wrote a key handler the ugly way shown above, change it to look like this:

pascal void
Key (short c, short code, short modifiers)
{

/* do key processing */
}

For all other callbacks, just change skelBinding to pascal.

Release 3.10 provided the Pascal-compatible library as the TransSkelPas library document. If you included that library in your project 
document, remove it and include TransSkel instead.

Porting Pascal Applications Written for Release 3.10

Pascal project documents written for release 3.10 included the TransSkelPas library 
document and the TransSkelPas.intf interface file. Remove these from your project and 
include the TransSkel library document and the TransSkel.intf interface file.

Pascal source files referred to TransSkel in the uses statement like this:

Page 4



TransSkel Programmer’s Note 11 The TransSkel 3.11 Interface
uses

TransSkelPas;

Change the uses statement to this:

uses
TransSkel;

Rationale for Changing the Interface

The primary reason for modifying TransSkel 3.11 to provide a Pascal-compatible 
interface was to allow it to be used from within Pascal applications without translating 
TransSkel itself into Pascal. The suggestion for this change was made by Lionel Cons, 
who noted that TransSkel release 2 had indeed been translated into Pascal, but was out of 
date with respect to the current C version. Instead of retranslating C into Pascal, why not 
declare all public and callback functions as pascal functions and provide a binary 
library that can be linked into Pascal applications?

The primary objection to this is that the entire “installed base” of existing C applications 
would be immediately rendered incompatible with a Pascal-compatible TransSkel. And 
since I write in C (I dislike Pascal), that would include all my own applications.

To avoid rendering C applications imcompatible with a TransSkel that used Pascal 
function bindings, I rewrote TransSkel so it could be compiled two ways. C applications 
could continue to use TransSkel in the normal way, and Pascal applications could use a 
version TransSkelPas that used Pascal bindings. This was release 3.10.

The attempt to accommodate both binding types was a mistake, as shown by the 
following scenario. Suppose you write a library of functions. You can make it usable 
from either C or Pascal by writing all the interface functions as pascal functions. 
However, if that library makes even a single TransSkel call, you’d need two versions of 
it: one compiled to expect C-binding TransSkel, for use within C applications, and one 
compiled to expect Pascal-binding TransSkel, for use within Pascal applications. This 
quickly escalates into an intractable mess.

I decided it’d be better to bite the bullet to convert TransSkel to use Pascal bindings only, 
and do the necessary one-time conversion of projects that use it. I do apologize for the 
inconvenience.

Page 5


